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Abstract 
Dissimilar Friction Stir Welded T-joints gives auxiliary strength to engineering structures, keeping insignificant 

body weight. Due to the stronger material being away from the heat source, the T-joint between AA8011 and 

AA5754 is very vulnerable to formation of defects which results in lower tensile strength along the skin and 

stringer. In this paper, two aluminium alloys, namely AA5754 and AA8011 were friction stir welded in the T-

joint configuration, and the roles of welding parameters such as the tool transverse speed, tool rotational speed, 

and tool shoulder diameter on the tensile strength along skin and stringer was analyzed and discussed. The relative 

importance of the three process parameters was also analyzed. The tool shoulder diameter is found to be the most 

dominant factor for the strength along the skin, whereas, tool transverse speed is found to be the most important 

for the strength along stringer. 

1. Introduction

Friction stir welding (FSW) is a recent welding technique developed and patented by W. 

Thomas and his colleagues in 1991 at the welding institute, Cambridge UK [1]. Leading 

industries, such as aircraft and aerospace sectors require joining of complex profiles as skin 

and stringer for the reduction in weight and enhanced mechanical properties. Since the 

commencement of the aerospace industry, designers have striven to attain a reduction in weight 

[2]. This drives a wide range of applications of aluminium alloys for wings, fuselage, and 

supporting structures in aircraft and transport industries (stiffened panels in railroads, car 

bodies, airframe structures, ship hulls, etc.). Some applications require joining of skin having 

high toughness and stringers having high strength in T-joint or corner weld configuration to 

create a strong supporting arrangement [1]. 

Since FSW is a solid-state welding technology, the melting of base materials is avoided, 

which eliminates several metallurgical defects and prevents the release of toxic fumes [3]. FSW 

is becoming a promising welding technique in transport and building industries to yield 

distortion-free welds. T-joints manufactured with FSW are produced with a specially designed 

tool having a pin that is inserted in the skin which results in localized backward and forward 

extrusion process of the flange material to reach the tool shoulder and penetrate up to the 

stringer [4]. The tool shoulder diameter, rotation and traverse speed determine the amount of 

heat generation and are responsible for the plastic flow of material from the Advancing side 

(AS) to the retreating side (RS) [5]. It has been reported that 86% of heat is generated by the 

friction between tool shoulder and part surface and rest due to the tool pin friction and plastic 
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strain [6]. The tool peripheral velocity and traverse speed vectors have the same direction in 

AS, however these are opposite in the RS. 

Research work published on T-joints fabricated by FSW is much scarce in comparison 

to the butt joints. Acerra et al. [3] conducted a series of experimental trials on T-joints of 

dissimilar materials to obtain optimum process parameters to yield sound welds, and reported 

that tools with large diameter required to provide the heat necessary for softening. When 

compared to butt joints, FSW of T-joints poses different challenges. Tool geometry, adequacy 

of the clamping, and distribution of heat during the process are some of the major challenges 

that researchers have explored. Buffa et al. [7] analyzed the material flow in FS welded T-joints 

by relating the experimental results with numerical simulation. The effect of two different tool 

profiles on heat distribution was also studied in this work. Zhao et al. [8] investigated the 

defects and tensile strength of 6013 Al alloy by fabricating T-joints with two different 

combination methods employing different process parameters. Different combination methods 

of T-joints as also been discussed in the literature [9-10]. Studies by Silva et al. [11] and Ahmed 

et al. [12] showed that FSW is a promising welding technique in the fabrication of age-hardened 

Al alloys panels. Feistauer et al. [13] analyzed the effect of reverse material flow on the 

microstructure of the T-joint of an Al-Mg alloy. Yang et al. [14] compared the strength of T-

joints obtained with a single and double pass by FSW and concluded that peel strength with a 

double pass is almost twice with that of a single pass. Publications by Erbslöh et al. [15]and 

Donati et al. [16] have proved the feasibility of FSW in the fabrication of T-joints and have 

employed the filler material to avoid the defects. Krasnowski et al. [17] investigated the 

weldability of EN-AW 6082-T6 T-joint by FSW and the mechanical and metallurgical 

properties of the joint. Fratini et al. [7] examined the FS welded T-joints by FSW of AA2024-

T4 and AA6082-T6 alloys and focused on the function of material characteristics of base 

materials in obtaining the weld. Mechanical analysis on T-joint of AA6082 T6 by FSW was 

carried out, with a special focus on the influence of rolling direction with respect to welding 

direction [18]. However, the selection of suitable process parameters is still very challenging 

in FSW of T-joints as they prominently affect the mechanical and metallurgical properties of 

the joint. T-joint configuration requires high strength as its area of application includes building 

structures, ships, aircraft fuselage, and wings, etc. Silva et al. [11] analyzed the FSW process 

by optimizing the process parameters using the Taguchi L-9 method and reported that tool 

rotational speed is the most important parameter in determining the mechanical properties of 

the joint. Also, literature reveals that research published on FSW of T-joints is mostly limited 

to welding of similar materials. FSW of dissimilar alloys remains challenging with stronger 

alloy placed as stringer, since softening beneath the skin material becomes difficult [19]. 

Therefore, the present work examines the role of rotational speed, shoulder diameter and 

traverse speed on dissimilar T-joints welded using FSW, with the alloy having higher tensile 

strength being the stringer material.  
  

2. Experimental Procedure 
 

The T-joint by FSW was completed using a specially designed tool on a sturdy vertical milling 

machine. It requires a properly build clamping fixture to hold the web beneath the skin. In the 

present study AA8011-H14 (flange/skin) with dimensions 200mmx 70mm x 3mm and 

AA5754-H24 (web) with dimensions, 200mm x48.6mm x 3mm were welded.  

The chemical composition of AA5754 and AA8011 alloys are given in the Table 1 and 

Table 2, respectively. Mechanical properties of the base materials are given in Table 3. Before 

welding the plates were cleaned with an organic solvent and dried. The experimental setup 

employed for the present work is shown in Figure 1. H13 die steel tool was employed to 

perform the weld. Figure 2 shows the schematic drawing of the FSW tool. 
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Figure 1: Experimental setup employed for FSW 

 

Table 1: Chemical Composition of AA5754 (wt.%). 

Element Al Si Fe Cu Mn Mg Cr Zn Ti Others 

Wt.% Balance 0.25 0.27 0.08 0.39 3.1 0.28 0.2 0.1 <0.15 
 

Table 2: Chemical Composition of AA8011 (Wt.%) 

Element Al Si Fe Mn Ti Cu Pb Sn Ti Zn 

Wt.% Balance 0.67 0.62 0.10 0.02 0.01 0.006 0.016 0.023 <0.010 

 

Table 3: Mechanical properties of the base material (BM). 

Al Alloy AA5754 AA8011 

Tensile Strength (MPa) 227.8 137.8 

Hardness (HV) 68.4 46 
 

Test specimen were machined using CNC wire electric discharge machine (W-EDM) 

for tensile testing. The standard metallurgical methodology of polishing and etching was used 

to prepare the samples macrostructural examination. Tensile testing of the joint along the skin 

as well as along the stringer was carried on Tensometer, as shown in Figures 3 and 4. Table 4 

shows the Taguchi L4 experimental design used in the present study. 
 

Table 4: Process Parameters employed for FSW 

Sample No. RPM Feed Shoulder 

Diameter 

Strength 

Skin Stringer 

1 560 63 18 20.1 34.6 

2 560 50 12 51.1 67.9 

3 710 50 18 44.1 46.6 

4 710 63 12 46.7 8.8 

 
Figure 2: Schematic drawing of tool employed for FSW 
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To analyze the effect of process parameters i.e., rpm, feed, and shoulder diameter (SD) 

Taguchi’s L-4 method was employed. The signal to noise (S/N) ratio is calculated for each 

factor level combination and considering larger the better. Using the formula as given below. 
𝑆

𝑁
= −10 log10 ∑ ((1/𝑌2) 𝑛)⁄  

𝑤ℎ𝑒𝑟𝑒, 
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑙𝑒𝑣𝑒𝑙  
𝑌 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

 

 
Figure 3: Fixture used for tensile testing along Skin 

 

 
Figure 4: Sample arranged on a computerized tensometer for testing 

 

3. Results and Discussion 
 

The tensile strength along the stringer and skin are most important factors in the dissimilar 

material T-joints. The T-joints of acceptable strength provide reliable basis for the fabrication 

of tailor welded blanks (TWB). The tensile testing of regular butt-joints are both normal and 

simple and has well established standard which provide guidelines and specifications for the 

testing of joint strength. But, for the testing of strength of the T-joints along the skin and 

stringers much needed guidelines are still ecvolving. To test the strength of the t-joints along 

skin and stringer especial fixtures were prepared and the testing was performed on standard 

tensometer.  
 

3.1. Tensile Strength 
 

To observe the effects of the main FSW process parameters on the two joint strengths the 

Taguchi’s L4 orthogonal array was used. The measured values of the strengths along the skin 

and stringer were converted in the S/N ratios (higher the better characteristic). The main effects 
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plots were plotted and are shown in Figure 5 and Figure 6. There is a significant difference 

between the strengths of the 8011(softer) and 5754 (stronger), in the present case the 8011 alloy 

forms the skin and hence receives more heat as it forms an interface with the shoulder. The 

spinning tool with a tilt causes the stirring which mixes the two materials well. The material 

mixing of the materials significantly affected by the three chosen FSW parameters. The main 

effect plots helps in identifying the levels of parameters which gives the value of most desirable 

or optimized results. The optimum setting of the parameters within the given ranges can be 

identified by the levels of each factor for which the value of S/N ratio is higher. The Fig 5 

reveals that the strength of the skin the rpm at the higher lever and the traverse speed and the 

shoulder diameter at lower levels represent the higher S/N ratios. Thus the strength of skin is 

optimum for tool rpm of 710 traverse speed of 50 mm/min and the shoulder diameters of 12 

mm. In case of strength of the stringer the optimum values is attained at the tool rpm of 560 

traverse speed of 50 mm/min and shoulder diameter18 mm. 
 

 
Figure 5:  Signal to Noise Ratio VS process parameters in the skin 

 

 
Figure 6:  Signal to Noise Ratio VS process parameters in the stringer 

 

In the case of skin, the strength increases with an increase in rotational speed, but the 

reverse was observed in the case of the stringer. In the former case, it is due to the proper 

intermixing of softened material at high rotating speed which results in strong metallic bond 

while in the latter case it may be due the insufficient material flow from the bottom to the top 

and due to excessive softening of the stringer due to which consolidation process is drastically 

affected. A low rotational speed generates insufficient heat to produce an effective bond 

between the two base alloys and with high rotational speed, excessive softening results which 
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reduces the chance to consolidate the material effectively both reasons leads to a reduction in 

tensile strength [20]. 

The tensile strength in the case of skin as well as in stringer decreases with an increase 

in traverse speed it is due to the insufficient heat generation at a high traverse speed which fails 

to produce an effective metallic bond. Increasing the traverse speed is accompanied by a 

reduction in frictional heating, thus reduction in grain, sub-grain sizes, and a reduction in the 

extent of recovery in the stir zone is commonly observed. Reducing the traverse speed at 

constant rotational speed results in an increase in frictional heat input per unit length thus 

affecting the workpiece. This is due to the fact that at low feed rates the workpiece remains 

under frictional heat for a greater length of time. With increasing shoulder diameter, the tensile 

strength in the skin decreases while in the case of stringer it increases. In the former case with 

increasing the SD, the weld flash increases, leading to material deficiency in the cross-section 

of the weld. In the latter case, the larger shoulder diameter increases the forging action, helps 

in filling the fillet area effectively thus producing an effective bond between the skin and the 

stringer alloys. 

  

3.2. Macrostructure 
 

The macrostructures of the weld structures are shown in Fig.7. The well-known zones in FSW 

weld structure are stir zone (SZ), Thermo-Mechanically Affected Zone (TMAZ), Heat Affected 

Zone (HAZ) which can be easily demarcated corresponding to skin and stringer. The distinct 

weld zones possess characteristic properties, grain structures, and grain sizes. SZ experiences 

Severe Plastic Deformation (SPD) and higher heat generation due to extensive stirring caused 

by the tool pin which results in dynamic recrystallization. 

 The induced plastic deformation in the adjoining region of the TMAZ is the result of 

the lower heat input. HAZ undergoes a thermal cycle that leaves it with grains larger than BM. 

The narrow weld zones in the stringer part are attributed to the lower heat input at the pin 

bottom. Due to the varied degree of softening in the materials of stringer and skin, the mixing 

and stirring is difficult. This is the main cause of tunneling defect being formed during T-joint 

between two different materials with considerable difference in their strengths. The reason is 

that reducing the feed rate at constant rotational speed increases friction heating/heat input per 

unit length affecting the workpiece. This result was also reported in previous works which 

assumed that as the maximum temperature reached within these feed rates, static grain growth 

could take place after recrystallization [21]. 
 

 

(a) (b) 



Nadeem Fayaz Lone et al. / International Journal of Engineering Sciences 2020 13(2) 50-57 

56 
 

 
Figure 7: Macrostructures corresponding to (a) Sample 1, (b) Sample 2, (c) Sample 3, and (d) 

Sample 4. 
 

 Tunneling defect has been observed in all the FS welded joints. Lower rotational speed 

of 560 rpm along with a higher feed rate of 63 mm/min generates insufficient frictional heat 

and therefore results in improper mixing of the weld materials on AS as well as RS side as 

shown in Fig. 7a. Decreasing the value of the feed rate to 50 mm/min keeping the rotational 

speed unchanged, the tunneling defect is seen to have drastically reduced as evident in sample 

2. 

 The presence of significant tunnels on the RS is attributed to the deficient forging effect 

of the tool shoulder(12mm) as evident in sample 1. This also leads to flash formation and the 

loss of material and ultimately deteriorates the weld quality. The presence of KB defect in the 

samples is the result of the insufficient transfer of heat at the interface of skin and stringer. 

Kissing bond defects are evident in the connection zone of the stringer to the skin. This kind 

of defect could result in catastrophic failure under both mechanical solicitations; since it could 

act as a preferential site for crack initiation and propagation. 
 

4. Conclusion 
 

With the assistance of specially designed tool and clamping fixture, T-joint FSW was 

performed on AA5754 and AA8011 alloys. of the conducted experiments and performed 

calculations lead to the following conclusions: 

1. Feed plays a crucial role in tunnel formation. It is evident that reduction of traverse speed at 

constant rotational speed resulted in smaller tunnels. For the sake of improved tensile 

strength, traverse should be kept at a lower value.  

2. The optimum weld obtained in the case of skin is having the parameters, 720 rpm, 50 

mm/min and 12 mm shoulder diameter while in the case of stringer it is obtained at 560 

rpm, 50 mm/min, and 18 mm shoulder diameter.  
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